Nano-Fe3O4@ZrO2-SO3H as highly efficient recyclable catalyst for the green synthesis of fluoroquinolones in ordinary or magnetized water
Authors
Abstract:
Core–shell zirconia-coated magnetite nanoparticle bearing sulfonic acid groups (nano-Fe3O4@ZrO2-H3PO4) have been prepared and used as an efficient acid catalyst in the synthesis of fluoroquinolons by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine. The reaction was carried out in the ordinary or magnetized water as a solvent. In the final outcomes, the nano-Fe3O4@ZrO2-SO3H showed good catalytic performance in the both forms of water. However, the magnetized water showed better results. Therefore, this new procedure provides prompt achievement to the appropriate products with acceptable yields in water as a green solvent at reflux situations with an easy work‐up process. Furthermore, the catalyst was recyclable and could be reused at least three times without any discernible loss in its catalytic activity.
similar resources
Application of ZrO2–SO3H as highly efficient recyclable nano-catalyst for the green synthesis of fluoroquinolones as potential antibacterial
Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in refluxing water. The results showed that ZrSA exhibited high catalytic activity towards the synthesis of f...
full textAn Efficient Green Approach for the Synthesis of Fluoroquinolones Using Nano Zirconia Sulfuric Acid as Highly Efficient Recyclable Catalyst in two Forms of Water
Various antibacterial fluoroquinolone compounds were prepared by the direct amination of 7-halo-6- fluoroquinolone-3-carboxylic acids with a variety of piperazine derivatives and (4aR,7aR)-octahydro-1H-pyrrolo[3,4-b] pyridine using Zirconia Sulfuric Acid (ZrSA) nanoparticle, as a catalyst in the presence of ordinary or magnetized water upon reflux condition. The results showed that ZrSA exh...
full textnano-rods zno as an efficient catalyst for the synthesis of chromene phosphonates, direct amidation and formylation of amines
چکیده ندارد.
Synthesis of Tetrahydrobenzo[a]xanthene-11-one Derivatives Using ZrO2–SO3H as Highly Efficient Recyclable Nano-catalyst
The catalytic effect of Zirconia Sulfuric Acid (ZrSA) nanoparticle which is synthesized from thereaction of ZrO with chlorosulfonic acid has been investigated in the synthesis oftetrahydrobenzo[a]xanthene-11-ones by one-pot three-component reaction of β-naphthol,aromatic aldehydes, and dimedone. Different reaction conditions were studied in the presence ofZrSA nanoparticle as catalyst. The resu...
full textZrOCl2.8H2O@nano SiO2: a green and recyclable catalyst for the synthesis of benzimidazoles
ZrOCl2.8H2O@nano SiO2 has been synthesized for the first time via a simple procedure and characterized by SEM (scanning electron microscopy), FT-IR, and EDX (energy-dispersive X-ray) techniques. The efficiency of the prepared nanostructure has been explored for the synthesis of benzimidazoles via the condensation reaction of orthoesters and diamines at 60 °C under solvent-free conditions. The s...
full textMy Resources
Journal title
volume 8 issue 1
pages 47- 52
publication date 2018-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023